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ABSTRACT 
 

Early cancer diagnosis and evaluation of cancer 
progression during treatment are two important factors for 
clinical therapy. In this study we propose a novel 
approach which automatically compares the subcellular 
location of proteins between normal and cancerous tissues 
in order to identify proteins whose distribution is modified 
by oncogenesis. This study analyzes 258 proteins in 14 
different cancer tissues and their corresponding normal 
tissues using images provided by the tissue microarray 
collection of the Human Protein Atlas. Using texture 
features automatically extracted from the tissue images, 14 
machine classifiers were trained to recognize the patterns 
of eight major organelles in each tissue. For each tissue-
protein combination, the results of the classifier for 
normal and cancerous tissues were compared. Eleven 
proteins were identified as showing differences in 
location; these proteins may have potential as biomarkers. 
 

Index Terms— Location proteomics, tissue micro-
array, pattern recognition, cancer profiling, immuno-
histochemistry, biomarker discovery 
 

1. INTRODUCTION 
 
Cancer therapeutics rely upon early detection of cancerous 
cells before they become metastatic or invasive for 
successful treatment. Moreover, early detection is 
important for studying disease progression, and in turn 
developing more effective therapeutics. Traditional 
approaches to measure early cancer stages are based on 
measurement of expression levels of biomarkers linked to 
specific types of cancer [1]. In addition to expression, 
protein location changes are also an important factor in 
cancer. For example, the reduction of cyclin D1-
dependent kinase export from the nucleus leads to 
increased phosphorlyation and inactivation of the Rb 
protein (a tumor suppressing protein) [2]. In this paper, 
we present a new automated approach to identifying 
cancer biomarkers. 

This approach involves using automated learning 
methods to compare subcellular location patterns between 

normal and cancerous tissues. Our group has successfully 
developed machine learning systems to recognize major 
subcellular organelle patterns in fluorescence micrographs 
of cell cultures [3-5]. With the recent development of 
tissue microarray technologies (TMA) that produce 
collections of histological sections of tissue, and the 
advent of the Human Protein Atlas image database of 
protein patterns in tissue obtained by TMA [6], we have 
recently extended our work to automatically classify 
subcellular location patterns in human tissue [7]. We 
showed that a single classifier can be trained to distinguish 
the patterns of 10 different proteins that localize to eight 
different organelles with an accuracy of 93% across 45 
tissues. 

Tissue samples that were imaged in the Human Protein 
Atlas were stained by a combination of two approaches. 
Indirect immunocytochemistry staining was performed 
using well-characterized antibodies against specific 
proteins, a horse radish peroxidase-conjugated secondary 
antibody, and diaminobenzidine. Oxidation of the 
diaminobenzidine by the peroxidase creates a brownish 
precipitate in cell regions expressing a specific protein. 
Hematoxylin was also used to stain nuclei and cell bodies 
a bluish color. The Atlas currently contains nearly 
3,000,000 images for more than 3,000 different antibodies 
across 45 normal tissues and 20 cancerous tissues 
(http://www.proteinatlas.org). Up to three samples of each 
normal tissue are present, each coming from a different 
subject. One or two samples from 12 different patients are 
present for each cancerous tissue [6]. 

The method described here begins by training 
classifiers to distinguish eight major subcellular patterns 
in each tissue type present in the Atlas, through selection 
of features which are robust to the variability of tissue 
structures between normal and cancer samples. Then, for 
each protein, the tissue-specific classifier is applied to the 
cancerous and normal tissue images to identify proteins 
whose patterns change for a given cancer.  
 

2. METHODS 
 

We first grouped corresponding normal and cancer tissues 
using the nomenclature of the Human Protein Atlas 
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Table I. Subcellular locations of proteins in cancerous and normal tissues as determined from images in the Human Protein Atlas. Columns 
1 and 2 show the nomenclature of the Atlas. The remaining columns show how many proteins were identified as belonging to the 8 major 
location classes (“normal”/”cancerous”). 

Cancerous tissue Normal tissue Endosome Nucleolus Nucleus Mito. Golgi Cytos. ER Lyso. 
Breast cancer Breast 49/49 29/23 0/18 12/22 39/0 3/10 4/11 0/3 

Endometrial cancer Endometrium 1 & 2 35/103 8/45 8/25 63/2 105/15 5/18 8/19 1/6 
Liver cancer Liver 20/36 14/30 5/5 79/30 41/65 7/11 16/9 7/3 
Lung cancer Lung 6/48 69/68 0/29 87/9 63/56 12/10 0/11 0/6 

Malignant lymphoma Lymph node 16/10 9/7 5/92 36/5 138/71 0/15 14/10 0/8 
Ovarian cancer Ovary 20/31 2/54 7/8 55/8 56/29 1/9 3/3 0/2 

Pancreatic cancer Pancreas 25/43 26/42 1/8 45/14 80/68 1/12 9/3 6/3 
Prostate cancer Prostate 18/41 79/34 1/0 24/39 44/78 23/6 21/12 8/8 
Renal cancer Kidney 28/79 43/61 2/3 46/12 60/25 4/8 14/9 3/3 
Skin cancer Skin 31/24 61/20 0/24 47/6 46/96 4/11 1/3 0/6 

Stomach cancer Stomach 1 & 2 44/67 37/57 0/11 50/23 68/37 3/18 9/0 8/6 
Testis cancer Testis 14/39 61/84 3/19 56/8 49/21 6/11 7/8 0/6 

Thyroid cancer Thyroid gland 36/61 93/12 0/86 18/28 75/17 1/25 8/0 1/3 
Urothelial cancer Urinary bladder 10/53 30/31 0/17 57/3 47/29 3/7 2/6 1/4 

 
(Table I). Among the 20 cancer tissue types, 14 are tissue 
specific while 6 have no single corresponding normal 
tissue in the database. For example “malignant_glioma” 
matched with “Cerebellum” and “Hippocampus”, and was 
thus not used for further analysis. 
 
2.1. Unmixing 
 
The Human Protein Atlas images contain a mixture of 
bluish hematoxylin staining and brownish 
diaminobenzidine staining against a white background. 
For pattern analysis, we needed to distinguish between 
these signals. Thus, we performed color unmixing before 
applying automated subcellular recognition methods. Due 
to experimental variance, the spectra of the stains are not 
necessarily consistent across images, and the dye 
intensities are not always proportional to concentration 
[8]. For these reasons, we used a blind approach, which 
involves determining initial color bases, and then 
iteratively solving for both the color bases and the stain 
spectra. We initialized using the a priori knowledge that 
there should be two stains per image and each has a 
different hue [7]. We subsequently solved the variables 
with non-negative matrix factorization, which has been 
shown to be effective at unmixing immuno-histochemical 
stains [8, 9]. 
 
2.2. Dataset 
 
Initially, a subset of 385 proteins from the Atlas was 
processed for this study. For each unmixed image, the 
level of staining was determined by total image intensity. 
Images with low diaminobenzidine staining were 
removed. Protein images for a specific tissue were not 
removed if at least two images with sufficient staining did 
remain.  This left 258 proteins for further analysis. 

2.3. Classification of major subcellular organelle 
patterns 
 
We have recently trained a single classifier to recognize 
10 proteins that localize to eight major organelles 
(nucleus, nucleoli, Golgi apparatus, endoplasmic 
reticulum, endosomes, lysosomes, mitochondria, and 
cytoskeleton) in blindly unmixed images with a resulting 
accuracy of 81.2% [7]. In this work we chose a set of 18 
proteins, each known to localize to one of the eight major 
organelle classes and for which visual inspection indicated 
no change in location in cancerous tissues. We trained 14 
separate classifiers to distinguish between the subcellular 
patterns in each of the 14 normal and cancerous tissues. 
Due to the limited number of normal tissue images, one 
protein image per normal tissue was added to the training 
set, while multiple corresponding cancer images were 
added to the sets. On average, each of the classes had 
approximately 23 images in each set (samples with no 
detectible protein were not considered). 

A set of 839 features were extracted from the unmixed 
tissue images as described previously [7]. These “field 
level” features do not require segmentation of the image 
into single cell regions and are derived from both 
morphological image processing and multiresolution 
texture analysis. A discriminating subset of these features 
were chosen for the training images using Stepwise 
Discriminant Analysis feature selection (which we have 
previously shown outperforms many other methods for a 
similar subcellular pattern classification task [10]). 
Support vector machine (SVM) classifiers were then 
trained on the training set features (using the LIBSVM 
toolbox from http://www.csie.ntu.edu.tw/~cjlin/libsvm). A 
grid search with 10-fold cross-validation was used to 
determine SVM parameters. The classifiers were then 
applied to the corresponding testing sets for evaluation. 
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Table II. Number of identified proteins that change their location pattern between normal and cancer conditions in different tissue types. 
Columns 3, 4, and 5 show how many such proteins are found using three different evaluation methods. Column 6 shows agreement 
between the max. likelihood and plurality methods, in term of classes the protein have been assigned.  

Cancerous tissue 
Protein 

processed 
(# proteins) 

Max. 
likelihood 

(# proteins) 

Plurality 
(# proteins) 

Majority 
(# proteins) 

Agreement 
with plurality 
(# proteins) 

Agreement 
with majority 
(# proteins) 

Breast cancer 136 113 17 0 12 0 
Endometrial cancer 233 195 18 3 14 3 

Liver cancer 189 150 15 2 11 1 
Lung cancer 237 188 18 1 11 1 

Malignant lymphoma 218 154 29 3 23 2 
Ovarian cancer 144 116 6 2 5 2 

Pancreatic cancer 193 145 21 4 14 4 
Prostate cancer 218 154 30 5 16 3 
Renal cancer 200 138 22 4 13 4 
Skin cancer 190 151 19 0 14 0 

Stomach cancer 219 174 26 5 19 5 
Testis cancer 196 143 21 3 13 2 

Thyroid cancer 232 207 7 0 6 0 
Urothelial cancer 150 107 13 2 8 1 

 
For each test sample, a classifier determines the 
probabilities that the sample belongs to one of the eight 
classes. The sample is assigned a label corresponding to 
the class it is most likely to belong. 
 
2.4. Application to normal and cancerous tissue 
 
For each protein, up to three images of each normal tissue 
and up to twelve images of each cancerous tissue were 
available. Thus, multiple results were available for the 
subcellular location of each protein in each tissue. We 
used three approaches to combine these results and assign 
a final subcellular location for each combination protein-
tissue: plurality voting, majority voting, and maximum 
likelihood. Plurality voting finds, for all images of a single 
protein, the classification label that occurs the most, and 
then assigns that location class to the protein. To raise the 
confidence of the protein classification and make the 
approach more robust to outliers, only votes for images 
that were classified with a probability higher than 0.75 
were counted. Majority voting uses the same approach but 
requires that the plurality class contain more than 50% of 
the images. On the other hand, the maximum likelihood 
method defines the subcellular location pattern of a 
protein in a tissue as the class with the highest sum of 
probabilities for all images in each class. In the case of 
ties by either the plurality voting or maximum likelihood 
methods, the label was assigned as “undefined.” A listing 
of the tissues and the corresponding number of proteins 
assigned to each subcellular location class by the 
maximum likelihood approach is shown in Table I. 
 

3. RESULTS 
 

The three methods tested to classify the subcellular 
location of protein in tissues give different levels of 

confidence in the results. As expected, plurality and 
majority votings which have been designed to take into 
account only reliable predicted labels are much more 
selective than the maximum likelihood voting approach. 
As a consequence, the counterpart of having a more 
dependable classification is the increase of the number of 
proteins with an undetermined location pattern. In 
contrast, the maximum likelihood method is able to 
classify every protein distribution in one of the 8 classes 
which provides a large amount of proteins with a different 
protein location pattern in normal and cancer tissues 
(Table II). Proteins whose location pattern has been found 
in agreement by the maximum likelihood and the plurality 
voting and with a difference between the normal and 
cancerous protein location should be considered with a 
higher interest to find potential biomarkers. This is even 
truer for the classification having an agreement between 
the maximum likelihood and the majority voting. We 
observe that a few such proteins are found for each tissue. 

The proteins whose locations were observed to change 
between cancerous and normal tissue are all candidates for 
potential biomarkers that could be used to diagnose or 
monitor cancer.  However, given the limited resolution of 
the tissue images and the limited number of samples in 
some cases, these comparisons varied extensively in 
confidence.  Therefore, to identify a set of high-
confidence potential biomarkers, we focused on classifiers 
for kidney, prostate and pancreas tissues (which showed 
the most reproducibility of protein pattern assignments for 
normal tissue).  Using these 3 classifiers we identified 11 
proteins with a different protein location pattern in cancer 
and normal tissues (Table III). An example of one of these 
proteins is shown in Figure 1. 
 
 

306



Table III. Potential biomarkers identified by the majority 
method.  

Ab ID Protein name Tissue Normal Cancer 
13 Neprilysin Kidney Lyso. Mito. 

118 Cystatin-C  Prostate Lyso. Golgi 

135 Keratin-15 
Kidney 

Pancreas 
Prostate 

ER 
ER 
ER 

Cytos. 
Cytos. 
Golgi 

239 
WD repeat 
protein 13 

Kidney Endo. Nucleolar 

302 - Pancreas ER Cytos. 
508 Adlican Kidney ER Cytos. 
554 Mac-2 BP Prostate Cytos. Lyso. 
850 - Pancreas ER Cytos. 
851 GRIPE Prostate Cytos. Golgi 

911 
Rho/Rac 

GEF 
Pancreas Golgi Cytos. 

1423 PACS-2 Prostate ER Golgi 
 

 
 

Figure 1. Example protein pattern change between normal and 
cancerous tissue. Protein is stained brown, while cell nuclei are 
stained blue. A WD repeat protein (Atlas ID# 239) shows a 
different pattern in normal tissue (A, C) than in cancerous tissue 
(B, D) in the kidney (A, B) and stomach (C, D). Classifiers 
assigned the normal tissue pattern as endosomal, while in 
cancerous tissue it was assigned as nucleolar. 

 
4. CONCLUSION 

 
We have presented a preliminary study that compares 
automatically the subcellular location of 258 proteins in 
cancer and normal tissues. The proposed method uses a 
classifier trained to recognize eight different subcellular 
patterns in histochemical stained tissue samples. Eleven 
proteins with a location pattern change have been 
identified and require further investigation to confirm 
their utility. This study illustrates the potential of machine 
learning systems to process large datasest of biological 

images produced by high-throughput technology. In future 
work we plan to refine the robustness of the classification 
approach (including adding more classes, such as soluble 
cytoplasmic proteins) and apply it to the full set of 
proteins provided by the Human Protein Atlas.  We hope 
that creating a subcellular protein location change 
signature for each tissue-specific cancer will aid in both 
early diagnosis and monitoring of cancer.  
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